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Visual search is described as searching for some target object in a given visual

scene, having several other non-target objects. Humans are continuously involved

in such tasks in their day-to-day life like searching for a specific food item in the

mall or searching for their friends at a party. Extensive studies in visual search

behaviour have demonstrated the complex interplay of the target object, the search

space, and the humans’ memory. In parallel, neurophysiological studies have shown

how neuronal circuits form complex visual representations. But very little work

has been done that links these exciting works from behavioural studies and neuro-

science. This thesis introduces an integrated computational model of visual search

that incorporates theoretical frameworks from psychology, resembling the architec-

ture from neurophysiology. The proposed model integrates three essential com-

ponents, an eccentricity-dependent deep convolutional neural network as a visual

processor, top-down target modulated activation maps, and bottom-up saliency-

based activations. The proposed model can replicate the standard results from

several behavioural studies conducted in visual search literature. And at the same

time, it is also efficient enough to search for a target object in a complex natural

scene. Various autonomous systems can also significantly benefit from the proposed
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model, for example, autonomous navigation or visual clinical diagnosis. Most of

the previous work on computational modelling of visual search in computer vision

involves extensive category-specific training and bear minimal resemblance to bio-

logical plausibility. In comparison, the proposed model is self-sufficient and does

not require human supervision or extensive task-specific training to search for any

new target object. An explainable visual search model that could replicate human

visual search behaviour will also bring more trust in such autonomous systems.
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Chapter 1

Introduction

Visual search is described as searching for some target object in a given surrounding

having several other non-target objects. Humans are continuously involved in such

tasks in their day-to-day life like searching for a specific food item in the mall, search-

ing for their friends at a party, searching for impurities while preparing rice, and

many more. Various autonomous systems can also be significantly benefited from a

visual search system, such as autonomous navigation or visual clinical diagnosis.

Even though the visual search is fundamental to humans’ day-to-day tasks, the

brain goes through very complex cognitive processing while performing a visual

search task. Extensive studies in visual search behaviour have demonstrated the

complex interplay of the target object, the search space, and the humans’ memory

and attention and how these often affect the search performances across different

visual search tasks ([1, 2, 3, 4, 5, 6, 7]). The neurophysiological studies of visual

processing in the brain have also demonstrated how different neuronal circuits cap-

ture visual representations, deploying attention and the eye moment ([8, 9, 10, 11,

12, 13, 14, 15]). Combining the studies from both worlds, we can see there are

several complex steps involved while performing a simple visual search of finding

an apple in a fruit basket. At first, humans must have stored some complex visual

representation of apples in their visual memory. Furthermore, when they look at the

fruit basket, the visual scene in front of their eyes might go through similar visual

processing, which was responsible for storing the visual representation of the apple.
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Figure 1.1: Basic cognitive processes involved in visual search

Later the brain might be using these representations to build an attention map to

predict the probability of finding the apple at a specific location in the given scene.

Based on the predictions, the brain sends some signals to move the eyes to that

particular location. However, the search does not necessarily end here. After the

eye movement, humans verify if the fixated object is really the target or not, which

involves another task, i.e. object recognition. Now, suppose the fixated location is

not the target. In that case, the whole process repeats again but with the additional

component of “memory” responsible for inhibiting the probability of visiting an al-

ready visited location. As we see in the above example, the visual search requires

a complex interplay of various cognitive functions of the brain. Thus an extensive

amount of neural processing might be undergoing during those tasks (See Figure

1.1 for illustration).

The computational difficulty of visual search can also be realised from the ap-

proaches used in computer vision. One of the most basic and earliest models of

attention can be thought of as classic template matching algorithms in computer vi-

sion. Even though the template matching algorithm provides a great tool to search

for an exact target template in a given image, it struggles with some variations or

occlusion in the target objects. The template matching approach can be improved

by applying it to specialised features extracted from the original image instead of

raw pixels. While several models could explore this possibility, IVSN, a recently in-
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troduced model of attention by [16], uses a similar method to present a biologically

plausible visual search algorithm. IVSN model has shown that bringing knowledge

from neuroscience to build the visual search architecture can significantly improve

the performance of such a model. Several other computer vision approaches using

the latest trends in deep learning technology have been shown to perform very well

in object detection tasks that can be loosely connected to visual attention [17, 18,

19]. But these models are limited by searching for only a fixed number of object

classes and requires an extensive amount of training to achieve it finally. On the

other hand, humans perform a visual search on a zero-shot basis, i.e., you show

them a target object, and even if they have not seen it in the past, they show an ef-

ficient performance while searching for that object. In contrast, the object detection

model will fail badly in those cases. Moreover, these models usually do not have any

resemblance to the neurophysiology of visual search. Note that with tons of com-

putational models published these days in artificial intelligence, one massive shift

of focus is to show how trustable these AI systems are. For example, in scenarios

like autonomous cars, it becomes a necessary condition to build a trustable system.

Building a model that aligns with neurophysiology and cognitive theory of the brain

is one way we can build trust in these systems. Because if we can show that the

model behaves in the same way a human might behave in a similar situation, it’s

understandable that the system is as much trustable as a human will be. Thus,

one crucial objective that we followed in this thesis was to build a computational

model of visual search that could replicate human behaviour. At the same time, it

must show comparable performances compared with other computer vision models

of attention.

During visual search, humans do not necessarily use target-based attention mech-

anisms. They sometimes also attend to some other locations based on the general

likeability of that location which is purely based on the statistics of the search im-

age. These are termed saliency models in computer vision and are often referred

to as bottom-up attention in psychology or neuroscience. Several computer vi-
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sion approaches exist, like the itti-Koch model, graph-based visual saliency, and

the DeepGaze model [20, 21, 22]. Usually, the architecture of these saliency-based

attention models differs significantly from the target-based attention model. To

our knowledge, none of the previous work tries at combining both top-down and

bottom-up of attention into a single model. But from behavioural studies, we know

that both kinds of attention play an essential role during attentional deployment.

Furthermore, from neurophysiology, we know that the visual stimuli must be going

through similar visual processing during the initial stages for both types of atten-

tion deployment. The two methods differ only at the end while assigning attentional

priorities in the brain. Thus, another focus of this thesis is to integrate different

components of visual attention into a single visual processing stage.

This thesis work introduces an integrated computational model of visual search

that incorporates both target-based and saliency-based attention. Both use the

same model for initial visual processing. The model is biologically plausible. The

proposed model can replicate the standard results from several behavioural studies

in visual search literature. And at the same time is also efficient enough to search

for a target object in a complex natural scene. The model is self-sufficient and does

not require human supervision to search for any new target object. Some part of the

model is free from any task-specific training, while some part does incorporate task-

specific training, but it does it based on its self-feedback mechanism. In other words,

the model knows how to learn and does not need any external human interference.

1.1 Organisation of thesis

Chapter 2 provides the necessary background studies to build the foundational

block for the proposed “computational model of visual search”. It explains in detail

what visual search tasks are and gives examples of some important visual search

categories. It then briefs some past work in visual search and describes how visual

information is processed in the brain and machines (by machines, SOTA compu-

tational model in computer vision). Chapter 3 describes the proposed modelling
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work. Chapter 4 describes different experiments carried out to compare the model

behaviour to that of humans and the model’s performance in doing a visual search

task in natural image conditions. Along with experiment details, Chapter 4 also

shows the individual results of each of the experiments. A combined result compari-

son across different tasks is explained in Chapter 5. Based on the results described

in Chapters 4 and 5, Chapter 6 proposes an additional module to the initial

proposed model in Chapter 3 to better capture human behaviour across all the

tasks. Finally, Chapter 7 provides a conclusion of this thesis work and directions

to future work.



Chapter 2

Background

This chapter describes necessary background studies to build the foundational block

for building the proposed “computational model of visual search”. The chapter starts

by describing what visual search is and some of the most popular types of visual

search tasks that contributed significantly to the development of visual search litera-

ture (Section 2.1). Then it introduces some of the influential works in modelling of

visual search and attention, which were extensively helpful in building the computa-

tional model described in this work (Section 2.2). Since visual representation plays

a vital role in deploying attention during visual search, the chapter will also briefly

cover how visual information is processed in the brain and machines (by machines,

we mean SOTA computational model in computer vision) (Section 2.3).

2.1 What is visual search?

In the most straightforward words, visual search can be described as searching for

some target object in a given surrounding having several other non-target objects.

For example, see Figure 2.1, the target image is a “curve”, and the subject needs

to find it among other distractor objects, which are straight lines of varying angles.

This is one simple example of visual search in an artificial display. As explained

earlier in the introduction, the visual search task is fundamental to day-to-day life.

The difficulties can vary a lot depending upon what kind of target and distractors
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Figure 2.1: An example of visual search task: Searching for a ”curve line” as target
item among several straight lines as distractor items.

are present. For example, searching for a red line among green lines could be very

easy, but searching waldo in children’s book “where’s the waldo?” is challenging.

Various visual search tasks exist in visual search literature which were used to study

the visual search properties. Two very prominent visual search experiments that

played a significant role in developing theories in visual search literature are the

feature-conjunction search pairs and search asymmetry.

2.1.1 Feature conjunction search pairs

The early theories of the visual search were mainly based on the observation that

it is effortless to search for a target object when the target can be distinguished

from the distractors on the basis of a single “basic” feature. Here basic features

mean colour, shape, motion, depth [23, 24]. These types of search conditions were

termed “feature search”. They are also called “parallel search” because in these

cases, the subject finds the target very quickly, almost instantly, which seems like

all the objects (target and distractors) were attended in parallel and simultaneously.

However, when the subjects were given a search task in which they need to combine

two or more basic features to distinguish the target from the distractors, the time

taken by them increases monotonically with the number of distractor items. Thus,
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Figure 2.2: Example of feature conjunction search pairs. It’s easy to search for
singleton feature “a pink bar” in panel A. or “a big bar” in panel B. While it’s difficult to
search for a conjunction of two features for example “a big green bar” in panel C. Panel
D. shows the performance of humans on these task where y-axis represents the time taken
to find the target object (RT) and x-axis represents the number of distractor items in the
display (C - Color; S - Size; S x C = Size and Color conjunction).

these types of search tasks were called “serial search” or “conjunction search”. This

class of visual search experiments played a significant role in the development of

Feature Integration Theory [23] (see Section 2.2.1 for details).

2.1.2 Asymmetry in visual search

Another important class of visual search experiments are the Visual Search Asym-

metries. A search asymmetry is said to occur when searching for object A amidst

other objects B is substantially easier than searching for object B amongst multiple

objects A. This phenomenon is interesting because, unlike the feature conjunction

search here, the distinguishable feature in both search conditions is the same, and

despite that, one condition is easier than the other. A simple explanation like

searching for basic features or conjunction of those basic features could not explain

these asymmetry results. This suggests that the difficulty of visual search not only

depends on the difference of features between the target and distractor but also

on a specific feature that constitutes making the target object. The guided search
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model [25] is an influential psychological model that explains this phenomenon (see

Section 2.2.2 for details).

Figure 2.3: Example of visual search asymmetry. It’s easy to search for curve
among lines (A) as compared to the reverse case (B). Panel C. shows the performance
of humans on these task where y-axis represents the time taken to find the target object
(RT) and x-axis represents the number of distractor items in the display.

2.2 Models of visual search

This section will shed some light on the two most popular models of visual search in

psychology, i.e. Feature Integration Theory and Guided Search Model. Both models

were mostly developed based on reaction time (RT) studies from various visual

search experiments. RT is defined as the time required by a subject to decide whether

the target is present or not present in the shown visual scene (or search image).

Mostly psychologist looks at the slope of the RT vs the numbers of distractor objects

in the search image as the metric for difficulty while the intercept is considered as

bias introduced because of motor response time to perform the experiment, which

is not much due to the cognitive process involved while performing a visual search.

The higher the slope more difficult the search task is considered. The most common

approach in developing these theoretical models is by varying the conditions of the

search task and analysing how those changes affect the difficulty of the tasks.

2.2.1 Feature Integration Theory

Feature Integration Theory (FIT) was introduced by Treisman in 1980 [23], and

became one of the most influential models of visual attention. According to FIT,
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Figure 2.4: Architecture of Feature Integration Theory (Source:
https://psyc2016.whatanimalssee.com/visualSearch.html | Date: 30 September, 2021)

the deployment of attention is processed in two stages. In the first stage, i.e. pre-

attentive stage, the information about basic features such as colour, shape, motion,

depth are collected automatically and parallelly. Parallel means all the features

across the whole image are identified simultaneously. The complete objects are

identified in the second stage of processing, combining the basic features from the

first stage to define the object. This combining of features is done serially. This

theory perfectly explains the feature conjunction search, i.e. when the target object

can be distinguished only based on the pre-attentive stage, the performance will

be dramatically fast, yielding almost a constant zero slope of RT vs Items because,

in the pre-attentive stage, all the feature maps are processed simultaneously in

parallel. On the other hand, since the conjunction of features will need multiple

feature maps from the pre-attentive stage to integrate during the focused attention

stage, the performance will not be parallel, and RT will increase with the number

of distractors.

https://psyc2016.whatanimalssee.com/visualSearch.html
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2.2.2 Guided Search model

Figure 2.5: Architecture of Guided Search model (Source: [26])

Jeremy Wolfe in 1989 introduced the Guided Search (GS) model, and since the

publication of the initial GS model, it has gone through several major revisions

[27, 26, 25]. Similar to FIT, the GS model is also involved in two-stage attentional

processing. But unlike FIT, GS does not suggest a simple strategy of searching by

combining multiple specific features of the target object in the given search image. In

GS, the first step is quite similar to FIT, in which input stimulus is filtered by basic

“categorical” channels, this step is here termed pre-attentive processing. Generally,

these channels are responsible for filtering basic features like colour, orientation, etc.

In GS, attention is defined in terms of activations/ priority maps, which defines the

priority for attending at a given location. These activation maps/ guidance are based

on various factors. The two most important factors that have been introduced since

the early versions of the GS model are the bottom-up activation, i.e. stimulus-driven

guidance and the top-down activation, i.e. feature-based guidance. In bottom-up

activation, the activation maps are generated based on the saliency of the item in

the scene. Saliency is a measure of how unusual the object at a given position is, in

respect to its surrounding. Clearly, this type of activation does not depend on the
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demands of the task, i.e. the information of the target object is not needed, and

guidance is purely based on the statistics of the given scene. In top-down activation,

guidance is based on features from the target object. In this case, those locations

which contain features similar to the features in the target object gets a higher

priority. We do not know what kind of features are capable of guiding attention

during the top-down guidance, but basic features like colour, orientations, etc are

undoubtedly guiding features. An exhaustive list of guiding/ non-guiding features

can be found in (Box 1 of [1]). The final activation map is a linear combination

of all top-down activations and bottom-up activation and can be represented by

an equation. It is possible to answer search asymmetry using the guided search

model because in the guided search model, the top-down activation map will not

only depend on the feature difference between the target and distractor object but

also on what guiding attributes are present in the target object.

2.3 Visual representation in the brain and ma-

chines

Figure 2.6: Structure of visual pathway in the brain and machine. A. shows
the anatomical brain regions. B. shows the model ventral visual stream. C. shows an
arbitrary convolutional neural network architectures (Source [28])
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2.3.1 The brain, the eye and the ventral stream

In this section, our aim is not to fully explain the visual information processing in

the brain but to give a brief overview of the brain’s visual circuitry, and furthermore,

to make the reader realise how the proposed model of visual search is very much

biologically plausible. Note that the biological plausibility of the model is essential

because along with predicting the visual search behaviour, we also want our model

to align well with neurophysiological studies.

The human brain consists of roughly 100 billion neurons which form the basic

building blocks of information processing in the brain. Extensive neuropsychological

studies have suggested that different anatomical regions are responsible for different

kinds of cognitive functioning (Figure 2.6). The occipital lobe of the primary

cerebral cortex of the brain is the most dominant region for vision. The human

visual system starts with the eyes. The light first enters through the eyes and

falls on the retina, and excites the photoreceptor neurons. Then the signals from

the photoreceptors reach the retinal ganglion cells (RGCs) via intermediate neuron

cells (horizontal, bipolar, and amacrine neurons). Most of the information from

the RGCs passes down to the lateral geniculate nucleus (LGN) in the thalamus.

LGN then transmits the visual signals to the first visual area in the visual cortex

called the “primary visual cortex (or V1). The neurons in V1 mainly respond to

low-level features like edges, colours, orientations and directions. The output from

V1 separates into two different pathways, popularly known as “what” and “where”

pathways. The “where” pathway is called the dorsal stream, which mostly processes

object motion and spatial location, whereas the “what” pathway is called the ventral

stream is primarily involved in object recognition and forms some complex visual

representations of the visual scene in front of the eye. Since the ventral stream is

mainly responsible for object recognition and in the processing of a high level of

visual representations, we will mostly focus on the properties of the ventral stream.

The ventral stream forms sequential and hierarchical stages of visual processing. The

information from V1 passes down to V2 and then to V4 and IT along the ventral
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stream. Each of these cortical regions integrates information from its previous region

to form a more complex and informative representation. As a result, these higher

regions respond to more complex stimuli, unlike the V1 cortex, which primarily

responds to edges or colours.

Another essential property of the ventral stream that plays a vital role in de-

ploying attentional priorities is the decrease of visual acuity from the fovea to the

peripheral region. The human visual system has small receptive field sizes in the

foveal part, and these receptive field sizes increase with eccentricity within a given

visual area [29]. Due to these differences in visual acuity, humans move their eyes to

attend to a specific location in a visual scene. In addition, receptive field sizes also

increase from one brain area to the next along the visual hierarchy of the ventral

stream [29].

2.3.2 The machines: Artificial Neural Networks

Even though there are vast numbers of computational models for extracting high

levels of visual representations and modelling the visual cortex, we will mainly focus

on Artificial Neural Networks (ANNs). There are a couple of valid reasons to do so:

Figure 2.7: Schematics of Artificial Neuron (Source: https://cs231n.github.io/ |
Date: 30 September, 2021)

1. The most fundamental building blocks of ANNs is inspired by the biologi-

cal neurons (Figure 2.7) and are often called artificial neurons. The most

noticeable difference between artificial neurons and biological neurons is that

https://cs231n.github.io/
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artificial neurons communicate in terms of “real values”, while on the other

side biological neurons communicate using spikes. However, note that most

of the information in biological neurons is encoded in the neuronal spiking

frequency rather than the exact time of those spikes. Now, if we make an

analogy of those “real values” of artificial neurons with spike frequencies in

biological neurons, it is fair to consider artificial neurons as a simplified model

of biological neurons [30].

2. CNNs, which are the class of ANNs consisting of convolutional layers, gives

a fair analogy to the simple and complex cells found in the V1 cortex of the

ventral stream. Past studies have shown that, similar to the V1 cortex, the

early layers of CNNs also respond mainly to simple features like edges and

colours.

3. Like the ventral stream, Deep CNN architecture also goes through sequential

and hierarchical processing stages.

4. It has been found that the representations extracted from intermediate layers

of Deep CNNs correlate with the neural recordings from the macaque brain.

They were also found to correlate with various other forms of non-invasive

recordings recorded from the human brain [31, 32, 33]. Some studies in cog-

nitive psychology and deep learning suggest that these Deep CNNs can also

capture hidden psychological representations similar to humans [34, 35].

5. Last but not least, state of the art ANN models have broken the record of most

of the other forms of computer vision models on several types of perceptual

tasks, often attaining better or close to human performance [36, 37, 38, 39].



Chapter 3

Modeling Visual Search

The proposed model is build upon the theories from features integration theories,

guided search model, and invariant visual search network [23, 25, 16]. Two most

essential components that are responsible in guiding attention in visual search are:

the bottom-up stimulus driven guidance and the top-down target feature modulated

guidance. For building each of these component we stuck to one unique model of the

human ventral visual cortex to extract-eccentricity-dependent visual features from

the target and search images. So, this makes our bottom-up and top-down model

an integrated model of visual attention unlike any other previous models where

only either one of these features were used. For the model of the visual cortex, we

used a pre-trained deep convolutional neural network and introduced eccentricity

dependent sampling to make it more similar to neurophysilogy.

The model is schematically illustrated in Figure 3.1. The model follows the

similar stages of visual search that a human might carry out in a search task. The

model takes two inputs: a target image (It, image of the object to search) and a

search image (Is, image where the target object is embedded amidst distractors).

In the initial conditions, the model fixates on the center of the search image. At

each fixation n, the model calculate a bottom-up saliency map (Sn) and a top-down

attention map (An). A weighted linear combination of these two maps results in an

overall attention map (On). A winner-take-all mechanism selects the maximum of

the overall attention map On as the location for the n+ 1-th fixation. This process
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Figure 3.1: Schematic of the computational model of visual search after inte-
grating various components.

iterates until the model finds the target with a total of N fixations. The model

has an infinite inhibition of return and therefore does not revisit previous locations.

Humans do not have perfect memory and do re-visit previously fixated locations,

for a more extensive quantification of such return fixations, see [40]. However, for

most of the experiments considered here, the total number of fixations is small and

therefore the number of return fixations would also be small.

After a fixation at a given location, the model needs to verify whether the target

is present at that location or not. Since the focus here is on visual search, the model

bypasses this recognition step by using an “oracle” recognition system. The oracle

checks whether the selected fixation falls within the ground truth target location,

defined as the bounding box of the target object. The bounding box is defined

as the smallest square encompassing all pixels of the object. In the experiments

discussed here, the target is always present and therefore the model will always

eventually find the target. To evaluate the effect of the object recognition step, we

considered a basic recognition system in which a cosine similarity score is calculated

between the features of the target object and the object pointed by the current
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Figure 3.2: Eccentricity-dependent sampling in visual cortex. A. Eccentricity-
dependent sampling leads to increasing receptive field sizes as a function of eccentricity for
the macaque visual cortex (left, Freemanet al.2011) and the proposed visual cortex model
(right). B. Example image and illustration of visual acuity as a function of eccentricity
at pooling layers 3 through 5 of the proposed model.

fixation. And based on a threshold value, the model decides whether the fixated

object is the target or not. It was observed that by manually tuning the threshold

value, similar results to the ’oracle’ method could be achieved. This suggests that

a diffusion-decision model can be used to estimate the right threshold value in an

online fashion without any manual tuning. This is out of the scope of this thesis

and is proposed as future work in (Appendice A1).

3.1 Eccentricity-dependent model of visual cortex

Before building an integrated architecture of visual search, we must have a computa-

tional model of the visual cortex which is responsible for transforming the raw-pixels

of the images to a higher dimensional feature space. To be able to predict the cor-

rect set of human behaviors, this model must have computational similarity with

the computation in the brain’s visual cortex. And finally, this model should be

responsible to act as the backbone for extracting features for different top-down or

bottom-up models of visual search. As described in the introduction, we considered

focusing on Deep Convolutional Neural Networks (DNNs) because of their high level
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similarity with the brain’s ventral stream and past studies showing its capabilities

in capturing neurophysiological and psychological features. But unlike the current

Deep-CNNs model which has a uniform pooling operation across all the space of the

image, leading to a uniform size of the receptive field across all eccentricities, for the

visual cortical neurons, receptive field sizes increase from one brain area to the next

along the visual hierarchy (Figure 3.1A, left). This increase is captured by Deep-

CNNs through pooling operations. In addition, receptive field sizes also increase

with eccentricity within a given visual area (summarized in [29]; Figure 3.1A,

left). So, the proposed model introduces eccentricity-dependent pooling layers that

brings similar eccentircity-dependent sampling in these Deep-CNNs as it is found in

the brain Figure 3.1A, right). Since there isn’t any study which accurately maps

this dependence in the human brain, we compared this with eccentricity-dependence

in a macaque’s brain, whose brain architecture is believed to very much resemble

that of humans.

We first define notations used in standard average pooling layers in the deep

learning literature ([41]). For clarity and simplicity, we described the model com-

ponents in the units of pixels; and then we provid a scaling factor to convert pixels

to degrees of visual angle in the end of this section. In an average-pooling operation

at layer l of VGG16 (the layer numbers used here follow the original definitions in

the VGG16 architecture excluding the activation layers), unit j in layer l + 1 takes

the average of all input units i in the previous layer l within its local receptive field

of size rl+1. Its activation value y is given by:

yjl+1 =
1

rl+1

rl+1∑
i=0

yil (3.1)

Note that traditionally most VGG16 architecture uses max-pooling instead of

average pooling but we considered to use the average-pooling operation instead

because of the eccentricity dependence, which brings a significant increase in pooling

window size as the eccentricity increases. Note that for very large window sizes, max
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Figure 3.3: Eccentricity-dependent sampling in Deep-CNNs. A. Proposed ecc-
NET architecture for visual cortex showing the eccentricity-dependent pooling layers in
original VGG16 model. B. llustration of eccentricity-dependent pooling layer l, shows the
receptive field sizes (rjl,n) for each unit j with distance dj from the centre (the color bar
here denotes the size of the pooling window in pixels).

pooling will simply destroy all the information stored in the higher eccentricity region

but average pooling layer will retain more information in the average of the region

inside the pooling window.

In the eccentricity-dependent operation, the receptive field size rjl+1,n of input

unit j in layer l + 1 is a linear function of the Euclidean distance djl+1,n between

input unit j and the current fixation location (fixation number n) on layer l + 1.

The further away the unit j is from the current fixation, the larger the receptive

field size (Figure 3.3B; in this figure, the fixation location happens to be at the

center of the image). Therefore, the resolution is highest in the fixation location

and decreases in peripheral regions.

rjl+1,n =


⌊ηl+1γl+1(d

j
l+1,n/ηl+1 − δ) + 2.5px⌋, if djl+1,n/ηl+1 > δ

2px, if djl+1,n/ηl+1 < δ

(3.2)

The floor function ⌊·⌋ rounds down the decimal pool window sizes to the nearest

integers. The variable γl+1 is a positive scaling factor for layer l+1, defining how fast

the receptive field size of unit j expands with respect to its distance from the fixation
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at layer l + 1. Based on the slope of eccentricity versus receptive field size in the

macaque visual cortex ([29]), we experimentally set γ3 = 0.00, γ6 = 0.00, γ10 = 0.14,

γ14 = 0.32, and γ18 = 0.64 (see Figure 3.2A for the slopes of eccentricity versus

receptive field sizes over pooling layers). We define δ = 4 dva as the fovea size.

For those units within fovea sizes, we set a constant receptive field size of 2 pixels.

Here ηl+1 is a positive scaling factor which converts the dva of the input image to

the pixel units at the layer l. We map the receptive field sizes in units of pixels to

units of degrees of visual angle (dva) using 30 pixels/dva. This basically defines the

number of pixels in one degree. This value indirectly represents the clarity of vision

for our computational model. More the number of pixels in one degree better the

clarity of vision. Note that due to computational limitations, we have restrictions

on how much clearer vision we can use. Since we have a stride of 2 pixels at each

pooling layer, the mapping parameter η from pixel to dva decreases over layers:

η3 = (30/2) pixels/dva, η6 = (30/4) pixels/dva, η10 = (30/8) pixels/dva, η14 =

(30/16) pixels/dva, and η18 = (30/32) pixels/dva. To achieve better downsampling

outcomes, the average-pooling operation also includes the stride ([41]) defining the

movement of downsampling location. We empirically set a constant stride to be 2

pixels for all eccentricity-dependent pooling layers.

A visualization for rjl,n is shown in Figure 3.3B; where different colors denote

how the receptive field sizes expand within a pooling layer. We illustrate the change

in acuity at different pooling layers in Figure 3.2B.

These customized eccentricity-dependent pooling layers can be easily integrated

into other state-of-the-art object recognition deep neural networks. All the com-

putational steps are differentiable and can be trained end-to-end with other layers.

However, since we are interested in testing the generalization of our model from

object recognition to visual search, we do not retrain the model and instead use the

weights of the original VGG16 architecture. Because there is no training, one might

think that the resulting network might show lower performance in object recognition

than the original VGG16 results but we argue that the ”main” feature extraction
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part of the model remains fairly robust against these changes. Note that gener-

ally most Deep-CNNs architectures have two sets of layers, some initial groups of

convolutional layers followed by some some linear classification layers. It’s general

hypothesis that the convolutional layer captures the feature representations and the

linear layers use those extracted features to learn the classification model to perform

object recognition. So to test whether these changes affects the object recognition

performance we freeze the convolutional layers and only trained the top-classifcation

layers. We observe that even after bringing in these changes, the model showed per-

formance close to that of the original VGG16 model.

3.2 Bottom-up saliency model

The bottom-up saliency model is based on the information maximization approach

(Figure 3.4). This method has been previously shown to be effective to find salient

regions in an image ([42]). The original implementation used a representation based

on independent component analysis. Instead, here we use the feature maps extracted

from the computational model of the visual cortex (eccNET). Since the feature

maps of eccNET change based on fixation locations, the bottom-up saliency is re-

computed at every fixation step. This is different from the existing bottom-up

saliency prediction literature where most models take the entire image as input

and computation of these saliency maps does not depend on the current fixation.

Considering that for the top-down model (see next section), the model already need

to compute the features from eccNET, the additional computation of finding the

information gain for saliency estimation at each fixation step is negligible. At layer

l of eccNET, we extracted feature maps of size Cl×Hl×Wl, where Cl is the number

of channels. and Hl, Wl denote the height and width, respectively. On the cth

channel of the feature maps, we define the histogram function Fl,c,n(·), which takes

the activation values yjl,c,n as inputs and outputs its corresponding frequency among

all individual units j at all Hl ×Wl locations at the nth fixation.

Next, the model calculates the probability distribution for each unit j on the cth
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Figure 3.4: Computational model of bottom-up visual saliency maps. At each
fixation n, the saliency model extract numbers of feature maps (yl,C,n) at layer l with
total number of C channels from the visual cortex model (eccNET) and then estimate
the probability distribution for individual channel of the feature maps (pl,c,n). Then it
calculates the self information (Al,c,n =-log(pl,c,n)), normalizes to [0,1], and adds them to
compute the overall salience map (Sn). Heatmaps show example visualization of pl,c,n and
Al,c,n. See scale bars on the right for activation values on these maps.

feature map at layer l and nth fixation:

pjl,c,n =
Fl,c,n(y

j
l,c,n)∑

i=0,1,...,Wl×Hl
Fl,c,n(yil,c,n)

(3.3)

where pjl,c,n denotes how prevalent the activation value yjl,c,n is over all units j

on the cth channel feature map. To capture attention drawn to less frequent visual

features on an image, the model uses the normalized negative log probability to

compute a saliency map for each channel and then averages the saliency maps over

all channels and then over all selected layers l = 9, 13, 17 to output the overall

saliency map Sn at the nth fixation:

Sn =
∑

l=9,13,17

Cl∑
c

− log(pjl,c,n)
pmax − pmin

(3.4)
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where: 
pmin = min({− log(pil,c,n) : i = 1, 2, ..., Hl ×Wl})

pmax = max({− log(pil,c,n) : i = 1, 2, ..., Hl ×Wl})
(3.5)

where the normalization of negative log probability is carried out by taking the

difference between the maximum and minimum negative log probability among all

the individual units i in the cth channel at layer l. Since not all feature maps at

the selected layers are of the same size, we downsampled individual saliency maps

in the lower layers l = 9, 13 to be of the same size as those at layer l = 17.

3.3 Top-down modulated activation maps

The top-down modulation is inspired by the IVSN model ([16], Figure 3.5). But

we brought in several notable changes to the IVSN model:

1. The base feedforward deep neural network architecture for the visual cor-

tex used in IVSN was VGG16 ([43]), which has uniform receptive field sizes

throughout the image. In stark contrast, visual cortex shows strong eccentricity-

dependent receptive field sizes. Here we replaced the VGG16 architecture with

an eccentricity-dependent model of visual cortex, described above. We refer

to the new model as eccNET.

2. Both IVSN and eccNET require computation of an overall attention map in

order to decide where to fixate next. Given the uniform sampling in IVSN,

the attention map was computed only once and did not change from one

fixation to the next, except for inhibition of previously visited locations. Since

eccNET outputs different feature maps depending on the fixation location, the

top-down modulation attention map also is a function of fixation n.

3. The top-down modulation in IVSN happens only in a single layer (the top

layer in the default version of the model). Here the model combines top-down

modulated features across multiple layers.
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Figure 3.5: Computational model of top-down feature dependent activations.
The model takes as input a target image (Im) and a search image (Is) both of which are
processed through eccNET. The feature extracted from target image applies a top-down
modulation on the features in search image at three different layers producing three dif-
ferent top-down activation maps. These three individual top-down activations are linearly
combined to finally produce an overall top-down attention map (An).

Both the target image (It) and search image (Is) are passed through the same

model mimicking the extraction of features in the visual cortex. Given the current

nth fixation location, the model generates feature maps ϕt
l+1,n at layer l + 1 for the

target image It. Correspondingly, the model generates ϕs
l,n in response to the search

image Is. We define the top-down modulation map Al+1→l,n as:

Al+1→l,n = m(ϕt
l+1,n, ϕ

s
l,n) (3.6)

where m(·) is the target modulation function defined as a 2D convolution with ϕt
l+1,n

as convolution kernel operating on the search image feature map ϕs
l,n. Note that the

layer l + 1 modulates the activity of layer l. In IVSN, the top-down modulation

occurred only in one layer (in the default version, using the top layer). In contrast,

here the model takes the weighted linear combination of normalized top-down mod-

ulation maps across multiple layers (l = 9, 13, 17) to compute the overall top-down

modulation map An. Since the top-down modulation maps at different layers are of
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different sizes, we resize all the top-down modulation maps A10→9,n and A14→13,n to

be of the same size as A18→17,n.

An =
∑

l=9,13,17

wl,n
(Al+1→l,n − minAl+1→l,n)

(maxAl+1→l,n − minAl+1→l,n)
(3.7)

where wl,n are weight factors that determine how strong the top-down modulation

at the lth layer contributes to the overall top-down modulation attention map An.

These weights wl,n were calculated during the individual search trials using the

maximum activation value obtained from each individual top-down modulation map:

wl,n =
maxAl+1→l,n∑

i=9,13,17 maxAi+1→i,n

(3.8)

In Experiment G (Figure 4.7), subjects might employ a unique search strategy

where the target features, such as color and orientation, might be weighted equally

in top-down modulation. Thus, we empirically set w9,n = w13,n = w17,n = 1/3 for

this experiment.

3.4 Integration of top-down and bottom-up acti-

vations

Given the overall saliency map Sn and the overall top-down activation map An at

the nth fixation (see sections above for computation of both maps), we normalize

both maps within [0,1] and compute the overall attention map On as a weighted

linear combination of both maps. wS,n and wA,n denotes the weights applied on

the bottom-up saliency map Sn and the top-down modulation map An respectively.

Previous work suggests that bottom-up saliency plays a more prominent role at the

beginning of a trial, before full top-down attention takes place. Also, based on the

demands of the task, the relative contribution of bottom-up and top-down can be

captured for three different task categories ([44, 45]). Based on these task categories,

the model implements three possible schemes:
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Scheme 1: This scheme belong to those category of tasks in which search can be

benefited more from the bottom-up attention as compared to the top-down atten-

tion.

Scheme 2: This scheme belong to those category of tasks in which bottom-up at-

tention and top-down attention both play important roles in finding the target.

Scheme 3: This scheme belong to those category of tasks in which search is penalized

more from the bottom-up attention as compared to the top-down attention.

Note that all these three schemes affect the decision bias only at the first and

second fixation (n = 1, 2) in each individual trial. For the subsequent fixations

(n > 2), we argue that humans are strongly guided by top-down modulation effect

with minimal bottom-up effect; that is, wS,n = 0 and wA,n = 1 for all n > 2 regardless

of the nature of visual search experiments. We formulate the computation of overall

attention map as follows:

On = wS,nSn + wA,nAn (3.9)

where 

wS,n = 0, wA,n = 1 if scheme (1) and n = 1

wS,n = 0.5, wA,n = 0.5 if scheme (2) and n = 1

wS,n = 1, wA,n = 0 if scheme (3) and n = 1

wS,n = 0, wA,n = 1 if scheme (1) and n = 2

wS,n = 0.37, wA,n = 0.63 if scheme (2) and n = 2

wS,n = 0.37, wA,n = 0.63 if scheme (3) and n = 2

wS,n = 0, wA,n = 1 if n > 2

(3.10)

3.5 Fixation to reaction time

The proposed computational model of visual search predicts a series of eye-fixations.

The psychophysics experiments 1-9 did not measure eye movements and instead re-

port a key press reaction time (RT) whereby subjects presumably found the target.
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Figure 3.6: Experiment to model reaction time from number of fixations. A.
Example from the T vs L visual search task used to evaluate the relationship between
reaction times and number of fixations. B. Reaction time grows linearly with the number
of fixations. Each gray point represents a trial. A line was fit to these data: R(ms) =
α ∗ n + β. A fit using linear least square regression gave α = 252.359 ms/fixation and
β = 376.271 ms (r2 = 0.90, p << 0.001). This linear fit was used throughout the thesis
to convert the number of fixations in the model to reaction time values in milliseconds for
comparison with human data.

To relate the model output to RT, we used data from a separate experiment that

measured both RT and eye movements (Figure 3.6A), see description under “Ex-

periment to convert fixations to key press reaction times”. We assume that the key

press RT results from a combination of time taken by fixations plus a motor response

time. Therefore to calculate key press reaction times in milliseconds from the num-

ber of fixations we used the linear fit in Equation 3.11. Here, RT = reaction time

in milliseconds, N = number of fixations until the target was found, α = duration

of a single saccade + fixation = constant, and β = motor response time = constant.

RT = α ∗N + β (3.11)

The value for constants α and β were estimated using the linear least-squares regres-

sion method on the data obtained from the experiment (Figure 3.6B): α = 252.36

milliseconds and β = 376.27 milliseconds. The correlation coefficient was 0.95

(p < 0.001). Here we assume that both α and β are independent of the actual

experiment and use the same constant values for all the figures (see Discussion).



Chapter 4

Visual Search Experiments

This work revisits several important and classical psychophysics experiments in vi-

sual search to compare the visual search behaviour predicted by the proposed models

against humans’. Most of these experiments were studied in psychophysics to under-

stand why one visual search is more complicated than the other and vice-versa. The

task’s difficulty in visual search literature is revealed by how long a subject takes to

find a target object in a given search display with several distractor objects, often

termed reaction time (RT). Usually, RT increases monotonically with the number

of distractor items present in the display. Psychologists often compare the slope of

the search time vs the number of distractor items as a measure of the difficulty for

that specific task. The higher the slope more difficult the task is considered. We

consider two well-established properties in the visual search literature for testing our

model, the feature conjunction search and the search asymmetries. Within both of

the experiment types, we selected several crucial experiments responsible for provid-

ing theoretical grounds of feature integration theory and the guided search model.

Since most of these experiments have artificial search displays, we considered some

additional experiments having natural images to test our model performance in a

more natural setting. This chapter will provide the details of each experiment indi-

vidually and the model performance. The combined results of all the experiments

are discussed in the next chapter.
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4.1 Visual search asymmetry

Visual search conditions were searching for an object A amidst other objects B is

substantially easier than searching for objects B amongst multiple objects A ([46, 47,

48, 49, 50]) is termed as visual search asymmetry. For example, looking for a curved

line embedded in a display with multiple straight lines is considerably easier than

searching for a straight line in the middle of many curved lines. Search asymmetry

is observed in a wide variety of visual search experiments and played a significant

role in developing theories in the guided search model. Here we focus on six classical

experiments ([46, 47, 48, 49]) to investigate the computational mechanisms that give

rise to the emergence of such asymmetries:

4.1.1 Experiment 1: Curvature.

Figure 4.1: Stimuli and RT plots for Experiment 1: Curvature

This experiment is based on [46]. There were two conditions in this experiment:

1. Searching for a straight line among curved lines (Figure 4.1A, top) and 2.

Searching for a curved line among straight lines (Figure 4.1A, bottom). The

search image was 11.3 x 11.3 degrees of visual angle (dva). Straight lines were 1.2

dva long and 0.18 dva wide. Curved lines were obtained from an arc of a circle of
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1 dva radius, the length of the segment was 1.3 dva, and the width was 0.18 dva.

Targets and distractors were randomly placed in a 6 x 6 grid. Inside each of the

grid cells, the objects were randomly shifted so that they did not necessarily get

placed at the center of the grid cell. This ensures that the inter-object distance does

not remain constant. The target and distractors were presented in any of the four

orientations: -45, 0, 45, and 90 degrees. Three set sizes were used: 8, 16, and 32.

There was a total of 90 experiment trials per condition, equally distributed among

each of the set sizes.

Psychophysics study from [46] suggests that it is difficult to search for a straight

line among curves as compared to the reverse case (Figure 4.1B, Humans). The

proposed model showed similar behavior, well all the schemes showed difficulty in

searching for straight lines with ”Scheme 3” showing the best match to psychophysics

data (Figure 4.1B). Indicating that it’s the top-down modulation that plays an

important role in driving asymmetry for search in curve vs line since in ”Scheme

3” the relative weight for the bottom-up component is zero. While ”Scheme 3”

captured the human performance qualitatively, there were quantitative differences.

The blue line slope for humans is 0.8, while for the model, it’s 0.0, and the slope for

the red line for humans is 7.6, but for the model, it’s 4.43. It’s important to note

that the model did not do any specific parameter fitting to achieve the qualitative

performance, unlike other computational modelling approaches.

4.1.2 Experiment 2: Lighting direction.

This experiment is based on [47]. There were two conditions in this experiment:

1. Searching for left-right luminance change among right-left luminance changes

(Figure 4.2A, top). 2. Searching for top-down luminance change among down-top

luminance changes (Figure 4.2A, bottom). The search image was 6.6 x 6.6 dva.

The objects were circles with a radius of 1.04 dva. The luminance changes were

brought upon by 16 different levels at an interval of 17 on a dynamic range of [0,

255]. The intensity value for the background was 27. Targets and distractors were
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Figure 4.2: Stimuli and RT plots for Experiment 2: Lighting Direction

randomly placed in a 4 x 4 grid. Inside each of the grid cells, the objects were

randomly shifted. Three set sizes were used: 1, 6, and 12. There was a total of 90

experiment trials per condition, equally distributed among each of the set sizes.

Psychophysics study from [47] suggests that it is difficult to search for horizontal

luminance change as compared to the vertical luminance change condition (Figure

4.2B, Humans). All the schemes for the proposed model showed similar behaviour,

with the ”Scheme 2” showing the best match to psychophysics data (Figure 4.2B).

Indicating that top-down and bottom-up modulation both play a somewhat equal

role in driving asymmetry for search in curve vs line since in ”Scheme 2”, the relative

weight for the bottom-up component is 0.5. For this experiment, the model matched

the psychophysics data both qualitatively and quantitatively. The slope for humans

is 4.2 and 23.9 for the blue line and red line, respectively. While for ”Scheme 2”,

slopes are 0.0 and 21.3 respectively for the blue and red lines.

4.1.3 Experiments 3: Intersection I

This experiment is based on [48]. There were two different conditions: 1. Searching

for a cross among non-crosses (Figure 4.3A, top). 2. Searching for a non-cross

among crosses (Figure 4.3A, bottom). Each of the objects was enclosed in a square
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Figure 4.3: Stimuli and RT plots for Experiment 3: Intersection I

of size 5.5 x 5.5 dva. The width of the individual lines used to make the object was

0.55 dva. Non-cross objects were made from the same cross image by shifting one

side of the horizontal line along the vertical. The search image spanned 20.5 x 20.5

dva. The objects were randomly placed in a 3 x 3 grid. Inside each of the grid cells,

the objects were randomly shifted. The target and distractors were presented in any

of the four orientations: 0, 90, 180, and 270 degrees. Three set sizes were used: 3, 6,

and 9. There was a total of 108 experiment trials per condition, equally distributed

among each of the set sizes.

Psychophysics study from [48] suggests that it is difficult to search for crosses

among non-cross as compared to the reverse case (Figure 4.3B, Humans). In this

experiment, we observed that ”Scheme 3” showed the best match to psychophysics

data (Figure 4.3B). Indicating that it is the top-down modulation that plays an

important role in driving asymmetry for cross vs non-cross. Scheme 3 quantitative

performance was also close to the humans, with the blue line slope being 45.0 vs

32.7 and the red line slope being 96.0 vs 96.97 for humans vs the model.
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Figure 4.4: Stimuli and RT plots for Experiment 4: Intersection II

4.1.4 Experiments 4: Intersection II

This experiment is based on [48]. There were two different conditions: 1. Searching

for an L among Ts (Figure 4.4A, top). 2. Searching for a T among Ls (Figure

4.4A, bottom). Each of the objects was enclosed in a square of size 5.5 x 5.5 dva.

The width of the individual lines used to make the object was 0.55 dva. Non-cross

objects were made from the same cross image by shifting one side of the horizontal

line along the vertical. The search image spanned 20.5 x 20.5 dva. The objects

were randomly placed in a 3 x 3 grid. Inside each of the grid cells, the objects

were randomly shifted. The target and distractors were presented in any of the four

orientations: 0, 90, 180, and 270 degrees. Three set sizes were used: 3, 6, and 9.

There was a total of 108 experiment trials per condition, equally distributed among

each of the set sizes.

Psychophysics study from [48] suggests that it is difficult to search for L among

Ts as compared to the reverse case (Figure 4.4B, Humans). In this experiment

also the model was able to capture the asymmetry property using all the proposed

schemes, but the quantitative performance was not good. In this experiment, we

observed that ”Scheme 2” showed the best match to psychophysics data (Figure
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4.3B), indicating that top-down and bottom-up modulations both play a somewhat

equal role in driving asymmetry for search in curve vs line.

4.1.5 Experiments 5: Orientation I

This experiment is based on [49]. There were four different conditions: 1. Searching

Figure 4.5: Stimuli and RT plots for Experiment 5: Orientation I

for a vertical straight line among 20-degrees-tilted lines (Figure 4.5A, top). 2.

Searching for a 20-degree-tilted line among vertical straight lines (Figure 4.5A,

bottom). Each of the objects was enclosed in a square of size 2.3 x 2.3 dva. The

lines were of length 2 dva and width 0.3 dva. The search image spanned 11.3 x 11.3

dva. Targets and distractors were randomly placed in a 4 x 4 grid. Inside each of

the grid cells, the objects were randomly shifted.

Psychophysics study from [49] suggests that it is difficult to search for vertical

lines among tilted lines as compared to the reverse case (Figure 4.5B, Humans).

In this experiment, we observed that ”Scheme 1” showed the best match to psy-

chophysics data (Figure 4.3B) while others were failing to replicate the human

asymmetry pattern, indicating that it’s the bottom-up modulation that plays a vi-

tal role in driving asymmetry in such case.
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4.1.6 Experiments 6: Orientation II

This experiment is based on [49]. There were two different conditions: 1. Searching

Figure 4.6: Stimuli and RT plots for Experiment 6: Orientation II

for a 20-degree tilted line among tilted lines of angles -80, -60, -40, -20, 0, 40, 60, 80

(Figure 4.6A, top). 2. Searching for a vertical straight line among tilted lines of

angles -80, -60, -40, -20, 20, 40, 60, 80 (Figure 4.6A, bottom). Each of the objects

was enclosed in a square of size 2.3 x 2.3 dva. The lines were of length 2 dva and

width 0.3 dva. The search image spanned 11.3 x 11.3 dva. Targets and distractors

were randomly placed in a 4 x 4 grid. Inside each of the grid cells, the objects were

randomly shifted. Distractors were selected such that the proportions of individual

distractor angles were equal. Four set sizes were used: 1, 4, 8, and 12. There was a

total of 120 experiment trials per condition, equally distributed among each of the

set sizes.

Unlike the previous experiments, in this experiment, the psychophysics study

from [49] suggests that it is difficult to search for tilted lines line among verticals

as compared to the reverse case (Figure 4.5B, Humans). The difference here is

that the distractors are not homogenous and thus creating more trouble in search.

In this experiment, none of the schemes performed similarly to humans. However,
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the asymmetry was loosely captured by ”Scheme 3”. The observation makes sense

if we compare this case with the previous experiment where the distractors were

homogenous. Since in Experiment 5, the distractor is homogenous, there’s more

room for the target becoming more salient than the distractor and thus, ’scheme 1’

shows a better match in that situation. But in this experiment, the saliency was

destroyed because of heterogeneous distractors and therefore, ”Scheme 3” proving

to be a better match.
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4.2 Feature conjunction search

Another prominent example of drastic changes in the difficulty of visual search is

the effect of feature conjunctions. Early studies of visual search noted that it is

relatively easy to find objects in cases where a single feature distinguishes them

from the distractors ([23]). For example, in a display consisting of diagonal blue

lines, subjects can rapidly spot a diagonal green line. The target seems to “pop

out,” and the search times are almost independent of the number of distractors

(here, the blue lines). In contrast, it is more challenging to detect a 45◦ green line

in a display consisting of 45◦ blue lines and minus 45◦ green lines. In this case,

distinguishing the target requires the conjunction of two features, orientation and

colour; the search times are longer and increase substantially with the number of

distractors. There are multiple examples of such conjunction effects. Here we focus

on three classical experiments ([24, 51]) to investigate computational mechanisms

underlying the decreased efficiency of a feature conjunction search.

4.2.1 Experiment 7: Conjunction search.

The stimuli in this experiment are based on the conjunction search experiments

in [24]. We considered three features to test our model: color, orientation, and

size. These features gave us a total of 6 different visual search conditions, three

with singleton feature search and three with the conjunction of two features. And

thus this makes three different experiment pairs for feature vs conjunction search

expeirments, (1) Size and Orientation; (2) Color and Orientation; and (3) Size and

Color (4.7). The tested colors were pink (RGB value: 180, 67, 149) and green (RGB

value: 0, 140, 99).

The background color was white (RGB value: 255, 255, 255). The orientations

were 45◦ and 135◦. The sizes were 0.5 x 1.6 dva and 0.3 x 0.9 dva. The search image

was 8.5 x 8.5 dva. Three set sizes were used: 4, 9, and 16. Objects were randomly

placed in a 2 x 2 grid (4 objects), 3 x 3 grid (9 objects), or 4 x 4 grid (16 objects).
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Figure 4.7: Stimuli for Experiment 7: Conjunction search

Objects were placed at the center of the grids. There was a total of 120 experiment

trials per condition, equally distributed among each of the set sizes.

In these experiments, ”Scheme 2” best captured the relative performance of

humans in the three conditions (4.8, A, B, C), i.e. conjunction searches being difficult

than the feature-based searches. Also, the absolute reaction time is quite comparable

in orientation vs size conjunction (4.8, A) and ”orientation vs color” conjunction

(4.8, B). But the model performed poorly on matching the absolute reaction time

in ”size vs colour conjunction” (4.8, C). If we take a close look at ”scheme 3”

(having no bottom-up) for all three conditions, we can see the model shows some

poor performance even on singleton features ”size” and ”colour”. That suggests the

Figure 4.8: RT plots for Experiment 7: Conjunction search
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target based feature itself is creating some trouble in identifying these features. Note

that these features are fundamental, and Deep CNN models were generally trained

to overcome some of these feature differences to improve classification performance

during occlusion or variations in the sought image. And probably that is the reason

why we got this observation. Since the top-down feature itself creates trouble in

finding size and color features, it’s not possible to improve the performance during

conjunction search. For singleton features, the bottom-up model highlights those

features because of their salience.

4.2.2 Experiment 8: Shape.

Figure 4.9: Stimuli and RT plots for Experiment 8: Shape

This experiment was based on [51]. Two types of shape features were used:

crown (three vertical lines pointing up), and points (two triangles pointing down)

(Figure 4.9A). The target can be distinguished from the distractors based on one

single shape feature in the control conditions. In contrast, in the conjunction search

condition, both shape features must be used to find the target. Three set sizes were

used: 3, 6, and 9. The search image was divided into 3 x 3 grid cells and covered

15 x 15 dva. The target and distractors were of size 2.5 x 2 dva and were placed
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randomly at the centre of the grid cells. There was a total of 90 experiment trials

per condition, equally distributed among each of the set sizes.

Similar to the previous experiment, in this also, ”Scheme 2” best captured the

performance pattern (Figure 4.9B). In this case, also absolute slopes have differ-

ences but are comparable. The slope for humans is 48.7, 10.7, and 4.2, respectively,

for ”overall”, ”points”, and ”crown” conditions. While for the models with ”Scheme

2”, the corresponding slopes are 25.2, 2.8, and 2.8.

4.2.3 Experiment 9: Preattentive.

Figure 4.10: Stimuli and RT plots for Experiment 9: Preattentive

This experiment was based on [51]. In the “easy” condition, preattentive objects

for the target and distractors were different (Figure 4.10A, top) while in the “hard”

condition, preattentive objects for the target and distractors were the same (Figure

4.10A, bottom). Three set sizes were used: 9, 16, and 25. The search image covered

16 x 16 dva. Objects were enclosed in a square of size 1.4 x 1.4 dva. Objects were

randomly placed in a 3 x 3 (9 objects), 4 x 4 (16 objects), or 5 x 5 (25 objects) grid.

Objects were placed at the center of the grids. There was a total of 90 experiment

trials per condition, equally distributed among each of the set sizes.

All the schemes happened to replicate the human pattern with ”scheme 1” and
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”scheme 2” having a better match in terms of absolute reaction time (4.10, B).

Scheme 3 also captures the relative performance trend that is the difficult search

being more difficult and easy search being easier. But the exact slope for difficult

case (Figure 4.10A, top) for the model with ”scheme 3” is relatively very high.
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4.3 Visual search in natural images

These experiments were based on [16]. In these experiments, we directly use the

target and search images provided by the authors. This class has three different

experimental conditions: Experiment 10: Object arrays; Experiment 11: Natural

design; and Experiment 12: Finding Waldo. These sets of experiments were chosen

based on increasing difficulty conditions and benchmark the model on different types

of visual search conditions relevant to the day-to-day life of humans. Similar to [16],

we also followed the following four metrics to evaluate the proposed model on these

tasks:

1. Cumulative performance: This is defined as the fraction of tasks in which

the target was found within the given fixation number. For example, say we

have a total of 300 tasks in object arrays, and the target was found only for 100

different cases within two fixations, then cumulative performance at fixation

number 2 will be 0.34. Now consider the model finds the target for 100 more

cases at 3rd fixation, then cumulative performance at fixation number 3 will

become 0.67.

2. Scanpath similarity score: This determines the similarity between the

scanpath predicted by the model with the scanpaths observed on humans.

The metric score was computed using the ScanMatch Toolbox of Matlab.

3. Saccade size distribution: During visual search, humans are found to have

one particular pattern of saccade sizes. They tend to make higher numbers

of smaller saccades as compared to larger ones. The saccade distribution

was plotted for both the model and humans side-by-side and were manually

compared to test whether and if the model also shows similar behaviour.

4. Fixation to target distance: Another interesting observation in human

visual search is that the last six fixations generally tend to come closer and

closer to the target object, i.e. the last fixation (L-0) being the closest to the
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target, and then L-1, L-2 and so on. For a computational model to predict

similar behaviour and performance would be a fruitful and exciting direction in

studying visual search. So here, we compared the distribution of the euclidean

distance between the target and the last six fixations.

The proposed model was compared against the IVSN model ([16]), which shows

best performances in these set of the task as compared to other models of visual

search. Thus, we took it as the baseline model and compared the performance of

the proposed model against all the four different comparison metrics.

Figure 4.11: The eccNET model matches previous visual search experiments
with object arrays ([16]). A. Example target and search images B. Cumulative search
performance as a function of fixation number for humans (red), eccNET (green) and IVSN
(gray). IVSN is the model proposed in [16]. C. Scanpath similarity scores between humans
(red), between humans and ECCnet (green), and between humans and IVSN (gray). The
scanpath similarity score measures the similarity between two two eye movement sequences
([52, 16]). D-F. Distribution of saccade sizes. G-I. Distribution of Euclidean distance
from target location to either of the last six fixation locations.
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4.3.1 Experiment 10: Object arrays

In the object arrays condition, a target image of a natural object was searched within

an array of six objects distributed along a circle (Figure 4.11). Sample stimuli and

results are shown in Figure 4.11. The cumulative performance of the proposed

model follows the pattern of humans. Also, the model has a higher area under the

curve as compared to IVSN, showing better performance in finding a natural object

in arrays (Figure 4.11B). Note that despite the introduced eccentricity, the model

showed better performance than IVSN, indicating that eccentricity could provide

some advantage in devising search strategies in such conditions. This is just an

observation, and this thesis does not intend to make any stronger claim on this but

recommends further work in this direction. The model also shows comparable scan

paths similarity score to humans and the IVSN model (Figure 4.11C). The major

advance came in the comparison of saccade distribution where the model showed

more similar behaviour to humans as compared to the IVSN model, suggesting

we have a better model to explain human behaviour in visual search task (Figure

4.11D-F). The model captured the human pattern in determining fixation to target

distance until the last (L-0) and second last fixation (L-1) which, on the other hand,

IVSN failed to do.

4.3.2 Experiment 11: Natural design

In the natural image condition (Experiment 11), a target object was searched in

a natural scene (Figure 4.12). Sample stimuli and results are shown in Figure

4.12. The cumulative performance of the proposed model follows the pattern of

humans. The model is having a slightly lower area under the curve as compared

to IVSN, showing poor performance in finding a natural object in natural scenes

(Figure 4.12B). Note that the difference is very small and can be attributed to

the degradation in the quality of images due to the introduced eccentricity. The

model also shows a comparable scan paths similarity score to humans and the IVSN
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Figure 4.12: The eccNET model matches previous visual search experiments
with natural images ([16]). The format and conventions in this figure are the same as
in Figure S2.

model (Figure 4.12C). Similar to results on objects arrays, the major differences

came in the comparison of saccade distribution where the model showed more sim-

ilar behaviour to humans as compared to the IVSN model, suggesting that this

was a better model for explaining human behaviour in visual search tasks (Figure

4.12D-F). Unlike the object arrays case, the model captured the human pattern in

determining fixation to target distance very accurately for all the last six fixations,

while the IVSN model fares badly in comparison.
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Figure 4.13: The eccNET model matches previous visual search experiments
with Waldo images ([16]) The format and conventions in this figure are the same as
in Figure S2. The target image of ’waldo’ is removed because of copyright issues. A
similar-looking image can be retrieved at this link (Date: 30 September, 2021).

4.3.3 Experiment 12: Finding waldo

In the Waldo condition, the search task followed the famous search game of finding

Waldo in a complex image with multiple similar objects (Figure 4.13). Sample

stimuli and results are shown in Figure 4.13. The cumulative performance of the

proposed model follows the pattern of humans. The model is having a slightly lower

area under the curve as compared to IVSN, indicatng poor performance in finding

waldo (Figure 4.13B), though the performance is yet quite comparable to IVSN

on the whole. The model also shows significant improvement in scanpaths similarity

score to the IVSN model (Figure 4.12C) and lies midway between the similarity

https://pbs.twimg.com/profile_images/561277979855056896/4yRcS2Zo_400x400.png
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score of the IVSN model and Inter-Human. Similar to results in the previous two

cases, the significant differences came in the comparison of saccade distribution

where the model showed more similar behaviour to humans as compared to the

IVSN model (Figure 4.12D-F). In determining fixation to target distance in the

finding Waldo case, the model accurately matches the human pattern upto the last

five fixations but fails for the last sixth fixation, while in comparison, the IVSN

model fails badly.



Chapter 5

Combined Results and Discussions

This chapter compares the results obtained by the proposed model against some

baseline and ablated versions of the model. Different metrics were used to compare

the models. The comparison are done on three different metrics/ conditions: 1.

Ability to reproduce the asymmetry property (using a self-introduced Asymmetry

Index to measure the level of asymmetry across all the asymmetry search experi-

ments) 2. Quantitative comparison of the search cost slope of reaction time vs the

item count (by computing the correlation values between the slopes predicted by

model and observed in human psychophysic studies). 3. Comparison based on the

visual search performance on Natural Images. Before moving forward, let us briefly

introduce the baseline and ablated models used for comparison.

The following four models were used as baselines for comparisons:

1. Chance prediction: No attention maps were predicted and the successive

fixations were predicted by uniform random sampling. Sampling was done

such that it incorporates IOR and do not sample any fixations point inside

the inhibited regions.

2. pixelMatching: Attention map is computed using raw image pixels of the

target and search image. It follows the template matching approach where

the target image was moved over the whole search image with a stride of 1×1

but without normalization.
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3. GBVS: We computed the bottom-up saliency map as proposed in ([53]) and

used this map for fixation prediction.

4. IVSN: A single top-down activation map based on the features extracted

using the top layer of VGG16 is computed for fixation prediction, as described

in the IVSN paper ([16]).

Following model ablations were done for comparisons:

1. eccNET_noecc: Eccentiricity component of the model was removed to

study the effect of eccentricity.

2. eccNET_0_0_1: Instead of using multiple layers only the top-most layer

was used as visual feature similar to the IVSN model except for the inclusion

of the additional component of eccentricity.

3. eccNET_no_sal: The bottom-up saliency component of the model was

removed.

4. eccNET_no_topdown: The top-down target modulation component of the

model was removed.

5. eccNET_Rot90: Instead of training on original sets of image in ImageNET

the Deep-CNN model was trained on rotated ImageNET data.

6. eccNET_MNIST: Instead of training on original sets of image in ImageNET

the Deep-CNN model was trained on rotated MNIST digit classification data.

5.1 Visual search asymmetry

As we saw in the previous chapter, the proposed model qualitatively captures most

of the asymmetry properties of visual search. Irrespective of the nature of task-

specific training, the model replicates similar behaviour which humans show. On

the other hand, the baseline models failed to capture those asymmetry properties.
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Figure 5.1: Asymmetry Indexes for eccNET, ablated and other models. Av-
erage Asymmetry Index for humans (dark green), eccNET (Scheme 3, light green), and
alternative models (light gray)

To better compare all the models on asymmetry properties, an asymmetry index is

introduced to measure the asymmetry in a given task. The Asymmetry Index is

defined as (H −E)/(H +E) for each experiment. Here H and E are the computed

slope of the RT versus item count plots for the hard (H, larger search slopes) and

easy (E, lower search slopes) conditions within each experiment. If a model follows

the human asymmetry patterns for a given experiment, it will have a positive Asym-

metry Index. The Asymmetry Index takes a value of 0 if there is no asymmetry, and

a negative value indicates that the model shows the opposite behavior to humans.

The individual asymmetry indices were computed for each experiment, and then the

average is taken across all the experiments to compare different models. The results

are shown in Figure 5.1. It can be clearly seen that the proposed model performed

significantly better than the other baseline models (0.513, Scheme 3, Figure 5.1).

The model was also ablated to test what were the essential components contribut-

ing to search asymmetry. This revealed that both of the major changes that were

brought in the IVSN model to build the top-down component of the proposed model

in this thesis played a significant role in arriving at this result. Without the eccen-
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Figure 5.2: Training data alters the performance of the visual search or biases
the polarity of search asymmetry. Reaction times as a function of the number of
items for Experiment 2.

tricity dependence, the model scored only 0.052 (Figure 5.1, eccNET_noecc),

and without the multiple top-down modulations, the model scored 0.084 (Figure

5.1, eccNET_0_0_1). But this still does not necessarily mean that only the

visual architecture contributes towards search asymmetry. The thesis suggests that

the statistics of the visual data used to train the object recognition model are also

responsible for the search asymmetry. This was shown by performing the same sets

of experiments but after altering the training data; in one case, we rotated the train-

ing dataset by 90 degrees to the model (Figure 5.1, eccNET_Rot90). In the

second case, we considered using low feature images of MNIST to train the model

(Figure 5.1, eccNET_MNIST). It was observed that changing the training data

also alters the performance of the visual search asymmetry, and in some cases, it

even alters the polarity Figure 5.1 and 5.2.

5.2 Quantitative comparison of search cost slope

To better compare the model’s performance with other baseline models, we com-

puted the correlation scores between the slope of the reaction time vs item count

between the model and the human for all the visual search conditions. The best

scheme out of the three for each experiment were chosen manually and was named

eccNET_optimal. The results are shown in the Figure 5.3. Additionally, the re-

sult for eccNET_DM model, which is independent of different integration scheme
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Figure 5.3: Correlation score for search cost slopes between baseline models
and humans over all experiments Here we show the Pearson’s correlation score ob-
tained on comparing search cost slopes in the reaction time versus number of objects plots
of the model with that of humans. The gray bars are score for baseline models compared
against our final proposed model in green. ∗ denotes p < 0.01 for zero correlation.

(see next Chapter 6) and does not require any human interference is also shown in

the same bar plot. Again the proposed model performed best, showing the highest

correlation score across all the tasks as compared to other baseline models. Similar

to search asymmetry, here also it was found that the ablated model scores were

significantly lower than the final proposed model, thus indicating that each of the

new components that was brought in the proposed model compared to IVSN has

significantly helped improve the correlation scores.

Figure 5.4: The search cost slopes for the model match humans’. For each of the
experiments and experimental conditions, the search cost slope in the reaction time versus
number of objects plots were computed. This figure shows the slopes for the model (y-axis)
versus humans (x-axis) for the search asymmetry experiments (A) and the conjunction
search experiments (B). The gray dashed line indicates the identity line. The dotted line
join the different conditions within the same experiment.
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Considering the low number of data points, looking only at the correlation values

may not be a good idea. So, we also looked at the exact scatter plots of slope

of reaction time vs the item count for each of the experiment conditions. It was

found that most of the point are close to the y = x identity line, indicating that the

predicted slopes are close to the human slopes. The slope scatter plot is shown in

Figure 5.4.

5.3 Visual search on natural images

The results from experiments no.s 11-13 show that despite bringing multiple changes

in the top-down component of the model compared to IVSN, the model is decent

enough to perform equally well on the three sets of visual search tasks consid-

ered in the IVSN paper. Note that these tasks were smartly chosen to benchmark

different search models on varying difficulty of the search tasks in natural image

settings. Along with showing comparable performance, the proposed model in this

work showed a much better prediction on saccade size distribution where the IVSN

model fails to do so. These results further suggest that along with showing good

performance in a natural setting, the model predicts human behaviour much bet-

ter than any previous models of visual search. The results are shown in Figure

4.11-4.13 in Chapter 4.



Chapter 6

Predicting Task-Dependent

Saliency Bias

The observation on various experiments using different modelling schemes suggests

that possibly humans are involved in some online learning process during which

they predict the relative weight for the bottom-up and top-down maps. Further,

these weights do not seem to be the same for all the sought experiments and could

probably vary on different stimuli, demands of the task, etc. No single scheme

appears to explain all the search experiments. We tried to introduce an additional

component to the proposed model, which brings similar specs into it. Before moving

forward, we would like first to state all the essential points that we must consider

while building such a mechanism:

1. The mechanism should not try to predict relative weights (W1) by using the

ground truth RT data from humans because while performing the same exper-

iment, humans did not have those. Note that we can always do a parameter

fitting to get the best match for the relative weight based on the experimental

data, and say that this is the weight that explains the results, but the pur-

pose of this thesis is not only to prove that but to also explain how humans

determine that relative weights.

2. The same method should be followed for all the different sets of experiments.
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Figure 6.1: The sequential process illustrating the module for determining
the saliency bias. At each fixation the module sends four signals to the decision model
fixation point, current saliency bias (W1), bottom-up saliency map, and top-down target-
modulated map.. The decision module updates it’s internal bias parameters and use it to
predict the saliency bias (W1) for next fixation.

Any new parameters introduced in the model for this additional mechanism

should be the same across all the experiments and should not vary depending

on the search task.

Considering all the above points, we introduced a sequential decision mechanism

that uses the information at the current fixation to predict the relative weight for

the next fixation. To be precise, the model uses the current relative weight W1,

top-down map, bottom-up map, and feedback from the object recognition model to

know whether it found the target or not. And then, based on these four pieces of

information, it updates its belief about the W1. The process is shown in Figure

6.1. Whenever the model is given a new experiment, it starts the search by putting

W1 = 0.5, i.e. giving an equal contribution to both the maps. And then, after each

fixation, it updates its belief about W1 and continues this until the end of all the

experiment trials. The exact process by which the model updates the belief about

‘W1’ is shown in (Figure 6.2). The process can be described in following steps:

1. The model assumes that ‘W1’ follows some probabilistic distribution with

parameters alpha and beta.
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Figure 6.2: The decision model of the module predicting saliency bias The figure
shows the flowchart of how the internal parameters are updated at each fixation and how
it is used to predict the saliency bias (W1)

2. The model starts the search with the prior belief of alpha = 1 and beta = 1

for each experiment condition.

3. At each fixation, during the trial, the model updates the value of alpha and

beta based on what it has seen, i.e. the current fixation, saliency map and

top-down attention map.

4. The updated value of alpha and beta is used prior to the next trial in the same

experiment condition.

5. The update is a continuous process, and updating of alpha and beta is done

during all the search trials in that specific condition.

6. The model will start again from the beginning assigning W1 = 0.5, i.e. giving

equal weights to each map for any new experiment condition.

7. At any point of time, W1 will be the mode of the beta distribution. Therefore,

when alpha = beta =⇒ W1 = 0.5. Otherwise: W1 = (alpha − 1)/(alpha +

beta− 2)



58

Figure 6.3: Reaction Time predicted by the model for asymmetry search ex-
periments after incorporating the module for predicting saliency bias

6.1 Results and discussions

After including the module predicting the Task-Dependent Saliency Bias in the

visual search model, all the experiments were repeated from the asymmetry and

feature-conjunction classes. The model accurately predicted the relative pattern

of difficulty for each of the experiments giving a completely self-dependent model

capable of predicting the trends of human performance across all the sets of the

experiment. Though the absolute comparison of slope gave slightly poor perfor-

mance if compared against a manually selected salience scheme (0.656 correlation

score compared to the 0.824 correlation score of manually selected salience schemes),

there is clearly significant room for improving the model in the matter of predicting

the relative contribution of top-down and bottom-up component. But considering
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Figure 6.4: Reaction Time predicted by the model for feature-conjunction
search experiments after incorporating the module for predicting saliency bias

the simplification and the fact that the model was not given any external informa-

tion regarding the experiments, the results are excellent. This reaction time search

cost slope predicted by the improved model showed a correlation of 0.656 against

the human slope, where none of the other ablated models or baseline models reached

this score. The reaction time plots are shown in Figure 6.3 and 6.4



Chapter 7

Conclusion

This thesis introduces an integrated computational model of visual search that incor-

porates theoretical frameworks from psychology, resembling the architecture from

neurophysiology. The proposed model integrates three essential components, an

eccentricity-dependent deep convolutional neural network as a visual processor, top-

down target modulated activation maps, and bottom-up saliency-based activations.

The thesis argues that to build a universal model of visual search, it’s essential to

evaluate the model on its ability to replicate human behaviour in classical visual

search tasks and show comparable efficiency while performing a search task in natu-

ral scenes. Thus, the proposed model was evaluated on multiple visual search tasks

against humans in terms of search performance and capturing human behaviour. It

was found that the proposed model qualitatively predicted human behaviour in most

of the considered experiments and showed efficient performance on search tasks in

natural images. It’s important to note that the model had no exposure to any of

the images considered in these experiments and was only exposed to images in the

ImageNET dataset, which was used to pre train the Deep-CNN model.

Moreover, the model is self-sufficient and does not require human supervision or

task-specific training to search for any new target object. Some part of the model is

free from any task-specific learning, while some part does incorporate task-specific

training, but it does it based on its own self-feedback mechanism (see Chapter 3.2).

In other words, the model knows how to learn and does not really need any human
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interference. To our knowledge, none of any other models in literature has considered

the depth of psychological and neurophysiological ideas in building such a model for

visual search. Moreover, no other work shows an in-depth study on replicating

human behaviour across an exhaustive list of visual search tasks considered in this

thesis. This thesis also compared the proposed model against other models of visual

search. We found that none of them could replicate human behaviour across a decent

number of tasks.

Although the model showed excellent qualitative performance, the model falls

behind in quantitatively matching the exact reaction time of humans across all the

search tasks. Yet, the model brings various simplifications and assumptions. And

despite that, the success of the model in providing a good qualitative fit encourages

further investigation and opens up a path for exciting future work. It lays down

a strong evaluation methodology for any new visual search model. It exhibits the

ability to give decent efficiency for visual search in natural scenes: the model suggests

exciting directions to study its application in computer vision problems such as in

visual surveillance system, autonomous systems, or in visual design, where predicting

the visual direction where a human might look is important.
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Appendices

A1 Object recognition module

Figure A1: Schematics for implementing the object recognition network in the
proposed visual search model

In the context of visual search, the main task of the object recognition model

is to decide whether the fixated object is the target object or not which is a simple

two choice decision task. Thus, it can be implemented by finding a similarity be-

tween the features of the fixated object and the target object and then based on a

threshold value, the model will decide whether the fixated object is target or not.

The schematic for the architecture is shown in Figure A1. Note that, to properly

implement this idea, the model will also need a bounding box regression model to

find the closest object near the fixated point. Once the bounding box of the fixated

object is found, the model can pass down the cropped image of the fixated object

down the eccNET. Then a cosine similarity score will be calculated between the tar-
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get image’s feature and the fixated object. Finally based on the threshold value the

model will decide whether the fixated object is target or not. The main difficulty

comes on deciding the threshold value, which will vary for different task because

not all of them have similar looking objects. To test whether this system works

similar to the ’oracle’ one we manually tuned this threshold parameter to replicate

the results similar to oracle model. It was observed that by choosing a right set

of threshold parameter the same results can be obtained. Thus, a diffusion-based

decision model [54] could be used to retrieve the threshold parameter in an online

fashion. In which the model starts with a same initial belief for the threshold value

for each task and subsequently update it’s belief after each fixation depending on

the feedback of whether it arrived at the target or not. But incorporating all these

in the current model is a complex task and is out scope of this thesis.


